

Introducing AXION innovative products for road and building construction

ABOUT US

Axion Nigeria, a subsidiary of Axion Canada is the leader in the development, distribution and application of organic liquid monomer formulations for the global road and building construction industries.

Axion Technologies' products, initially developed by the U.S. military for swiftly deploying airstrips during the Gulf War, have transitioned to commercial use, maintaining their military- grade standards.

25 YEARS	75 COUNTRIES	99%
We have been in operation for 25 years, and over 20 years in Africa.	We have presence in over 75 countries in the world.	of our products have been tested and certified for quality

OUR VISON AND MISSION

Our vision is to be a leading, cutting-edge and innovative engineering company, supplying the building/civil engineering industry (governments, real estate developers, oil & gas sector) with efficient and cost-effective construction materials for buildings and roads.

Our mission is to continuously provide our customers with high quality, cost-effective, efficient and environmental-friendly products to solve problems facing the global building and construction industry.

WHAT WE DO

We provide environmentally friendly construction technologies.

- Road base stabilizer and polymer modified bitumen.
- 100% waterproof concrete technology.
- Engineered precast and specialized concrete products.
- Our products are made of high-quality innovative road and building construction materials, which ensure durable and cost-effective construction.

OUR PRODUCTS

- AXION SOLID BASE STABILIZER (SBS)
- AXION BITUMEN BOOSTER (PMB)
- AXION TUFFCRETE ORGANIC POLYMER
- AXION TUFFCRETE CEMENT
- AXION TOTAL-CRETE CEMENT
- HYDROSHIELD POLYMERIZED SCREEDING BOND
- AXTRA QUICK FIX ASPHALTIC CONCRETE LIQUID BINDER (COLD ASPHALT)

AXION SOLID BASE STABILIZER (SBS)

This is a powerful molecular binding agent used in soil stabilization and earth-work installation. It does not require coarse aggregate as it merely strengthens and improves the natural soil enabling it to achieve load bearing capacities that meet and exceeds international compaction requirements. The Axion solid base stabilizer results in approximately 60% cost savings in construction and maintenance costs.

PRODUCT FEATURES/ ADVANTAGES

- Strengthens and improves the natural soil enabling it to achieve higher load bearing capacity.
- Eliminates the cost of removing and replacing the topsoil.
- Eliminates the use of expensive aggregate, plus the cost of compacting it.
- Simply stabilizes the natural soil to achieve CBR levels of up to 200%.

AXION BITUMEN BOOSTER REFINER (PMB)

Bitumen is the preferred glue that holds aggregate together in road construction, the higher the quality of the glue, the greater adhesiveness. Axion bitumen booster (PMB) increases the bitumen by 30% and the asphalt by 20% while stabilizing and improving the elasticity from 6% to 79% over a wide range of temperature that allows the asphalt to withstand temperatures ranging between -22°C to +82°C. The benefit of this is that the thickness of asphalt can be reduced from the standard 6cm to 3cm, producing the same strength and yielding cost savings in the construction.

PRODUCT FEATURES/ADVANTAGES

- Eliminates hairline cracks.
- Increases bitumen volume by over 30%.
- 350% increase in the asphalt layers' life expectancy.
- Solution to rutting problem as it reduces it by up to 84.8%.
- Water resistant.
- Reduces execution time.
- 100°C effective range.

AXION TUFFCRETE & LIQUID POLYMER COMBO

This is a chemical resistant formulation that offers high tensile strength, with great adhesion to essential construction materials (steel, traditional concrete etc.) yielding roads with a load-bearing capacity of 4,000 tons per square meter. Axion Tuffcrete Combo provides cost saving of about 30% compared to conventional concrete and is 100% waterproof, fireproof, anti-fungal, damp-proof and prevents capillary actions. It can also be used for the construction of concrete roads, swimming pools, flooring, water treatment tanks, sewage tanks, oil and gas pipeline and gas stations. Overall Tuffcrete has proven to be efficient and cost effective.

PRODUCT FEATURES/ADVANTAGES

- Waterproof & fireproof.
- Longer life expectancy.
- Neutralizes salinity in sea water (salt resistant).
- More load bearing capacity.
- Save on steel reinforcement costs.
- Asphalt layers can be added to it.
- Not affected by oil and fuel spillage.
- Repair old, damaged concrete.
- Flexibility.

AXTRA QUICK FIX ASPHALTIC CONCRETE LIQUID BINDER (COLD ASPHALT

Axion introduces Axtra Quick Fix Asphaltic Concrete Liquid Binder (Cold Asphalt), a revolutionary technology designed for the construction of long-lasting and stable roads.

This innovative product is used as a super binder in making cold asphalt for patching of potholes. It can also be used in stabilization of all types of soil.

PRODUCT FEATURES/ADVANTAGES

- It does not require construction professionals or expensive contractors to implement.
- Creates job opportunities for youths just after a day's training.
- It does not require any special material or design to make an asphaltic concrete road.
- Must not use expensive construction equipment (asphalt plant) for mixing.
- Hot asphalts are quite hazardous and requires lots of workers and machineries to implement.
- It is cost effective.

TUFFCRETE/TOTAL-CRETE CEMENT & HYDROSHIELD POLYMERIZED SCREEDING BOND

INTERIOR SCREEDING

EXTERIOR SCREEDING

This product combination is a chemical formulation specially designed for tiling and screeding. It is 100% waterproof and does not require the addition of any other product (tile gum, cement or top bond) for its application.

Axion Total-Crete cement & Hydroshield Polymerized Screeding Bond combo can also be used for all-inone screed plastering, water proofing, antifungal, crack proof, fireproof, foundation protection (DPC), swimming pools, outside decks, tile gum, grouting, damp treatments, etc.

PRODUCT FEATURES/ ADVANTAGES

- 100% waterproof, damp-proof & anti-fungi.
- Longer life expectancy.
- Does not require any other products for its application (tile gum, cement, or top bond).
- Covers an area of over 30 square meters per bag.
- Saves cost.

Hitech Construction

DEEP SEA PORT, SECTION 1

Hitech Construction 1682 Sanusi Fafunwa street VI, Lagos Nigeria

Date reported: 10-05-2024

Request no:

DS1C1378

Client :

Axion Africa

Dei-Dei International Building Material. Market Abuja.

Opposite Panteka

Project: DANGOTE FERTILIZER TO ELEKO JUNCTION

Attention:

Axion Africa

Compressive Strength of Concrete Cubes [TMH1 - D1, D3, ASTM C293]

Date Received:

Date in Water:

05-04-2024 06-04-2024

Structure /

CRCP Element:

Location:

CH 15+831 - 16+029 LHS ITB BATCH PLANT

Cubes Made By: Cubes Tested By:

Specified Strength (MPa): Specified Slump:

C35 60 mm 65 mm Concrete Supplier: Delivery Note No: Truck Reg. Number:

WB 7444 TTV 32

Environmental Condition: Curing Tank Temp:

SUNNY AND HOT

Press Serial No:

26 °C

Correction Factor 1.000

Engineer's Specification:

Measured Slump: Balance Number:

3 Day Compressive Strength

Lab	Cube	Date	Date	Age	Break	Flatness	Mass	Apparent	Dime	ension	Load	Compressive
Number	Mark	Cast	Tested	Days	Pattern		mass	Density	Length	Width	Load	Strength
Α	1	05-04-2024	08-04-2024	3	A		8144	2413	150.00	150.00	535	23.8
В			8185	2425	150.00	150.00	607	27.0				
2								Average	150.00	150.00	571 kN	25.0 MPa
							Standard D	eviation	0.0	0.0	50.8	2.3

7 Day Compressive Strength

Lab	Cube	Date	Date	Age	Break	Flatness	Mass	Apparent	Dime	nsion		Compressive
Number	Mark	Cast	Tested	Days	Pattern	rauless	mass	Density	Length	Width	Load	Strength
С	3	05-04-2024	12-04-2024	7	A		8172	2421	150.00	150.00	724	32.2
D	4	05-04-2024	12-04-2024	7	A		8159	2417	150.00	150.00	699	31.1
E	5	05-04-2024	12-04-2024	7	A		8193	2428	150.00	150.00	686	30.5
	-							Average	150.00	150.00	703 kN	31.0 MPa
							Standard D	eviation	0.0	0.0	19.2	0.9

14 Day Compressive Strength

Lab	Cube	Date	Date			Flatness	Mass	Apparent	Dime	nsion		Compressive
Number	Mark	Cast	Tested	Days	Pattern	i tatriess	11033	Density	Length	Width	Load	Strength
F	6	05-04-2024	19-04-2024	14	Α		8124	2407	150.00	150.00	788	35.0
G	7	05-04-2024	19-04-2024	14	Α		8173	2422	150.00	150.00	814	36.2
н	8	05-04-2024	19-04-2024	14	Α	Ä	8152	2415	150.00	150.00	813	36.1
		-				1		Average	150.00	150.00	805 kN	36.0 MPa
							Standard D	eviation	0.0	0.0	14.6	0.6

28 Day Compressive Strength

Lab	Cube	Date	Date	Age	Break	Flatness	Mass	Apparent	Dime	ension		Compressive
Number	Mark	Cast	Tested	Days	Pattern	rathoss	11033	Density	Length	Width	Load	Strength
1	9	05-04-2024	03-05-2024	28	Α		8199	2429	150.00	150.00	882	39.2
J	10	05-04-2024	03-05-2024	28	Α		8178	2423	150.00	150.00	906	40.3
K	11	05-04-2024	03-05-2024	28	Α		8184	2425	150.00	150.00	871	38.7
L	12	05-04-2024	03-05-2024	28		ļ	8190	2427	150.00	150.00	892	39.7
								Average	150.00	150.00	888 kN	39.0 MPa
							Standard Deviation		0.0	0.0	15.0	0.7

Deviation from test method:

Remarks and notes:

NORMAL CRCP MIX DONE FOR THE SITE ON 05-04-2024

The samples were subjected to analysis according to (COLTO) (TMH1) (BS) (ASTM) (TMH5)

The test results reported relate to the sample tested.

Further use of the above information is not the responsibility or liability of Hitech Construction.

Documents may only be reproduced or published in their full context.

Report compiled by:

Christiaan Jordaan

Report program v13.10.1 (01-04-2024)

Christiaan Jordaan

Ground / Field Manager

Hitech Construction

DEEP SEA PORT, SECTION 1

Hitech Construction 1682 Sanusi Fafunwa street VI, Lagos Nigeria

Date reported: 10-05-2024

Request no:

AXION A4

Client:

Axion Africa

Dei-Dei International Building

Material. Market Abuja.

Opposite Panteka

Project: DANGOTE FERTILIZER TO ELEKO JUNCTION

Attention:

Axion Africa

Compressive Strength of Concrete Cubes [TMH1 - D1, D3, ASTM C293]

Date Received: Date in Water: Cubes Made By:

Cubes Tested By:

Specified Slump :

Measured Slump:

Balance Number:

Specified Strength (MPa):

Engineer's Specification:

06-04-2024

C35

60 mm

15 mm

Structure / CRCP

Element:

REFINERY SECTION 1 LABORATORY

Concrete Supplier:

Delivery Note No:

ITB BATCH PLANT

Correction Factor

1.000

Location:

Truck Reg. Number:

SUNNY AND HOT

Environmental Condition: Curing Tank Temp:

26 °C

Press Serial No:

ive Strangth

Lab	Cube	Date	Date	Age	Break	Flatness	Mass	Apparent	Dime	nsion	Load	Compressive
Number	Mark	Cast	Tested	Days	Days Pattern	Flatness	Mass	Density	Length	Width	Load	Strength
C025	1	05-04-2024	12-04-2024	7	Α		8148	2414	150.00	150.00	679	30.2
C026	2	05-04-2024	12-04-2024	7	A		8264	2449	150.00	150.00	610	27.1
C027	3	05-04-2024	12-04-2024	7	A		8275	2452	150.00	150.00	629	28.0
		1		-				Average	150.00	150.00	640 kN	28.0 MPa
						5	Standard D	eviation	0.0	0.0	35.4	1.6

14 Day Compressive Strength

Lab	Cube	Date	Date	Age	Break	Flotocoo	Mass	Apparent	Dime	nsion	Load	Compressive
Number	Mark	rk Cast Tested Days Pattern	Flatness	Mass	Density	Length	Width	Luad	Strength			
C028	4	05-04-2024	19-04-2024	14	A		8233	2439	150.00	150.00	791	35.1
C029	5	05-04-2024	19-04-2024	14	A		8199	2429	150.00	150.00	731	32.5
C030	6	05-04-2024	19-04-2024	14	Α		8257	2447	150.00	150.00	771	34.3
						1		Average	150.00	150.00	764 kN	34.0 MPa
							Standard D	eviation	0.0	0.0	30.6	1.4

28 Day Compressive Strength

Lab	Cube	Date	Date	Age	Break	Flatness	Mass	Apparent	Dime	nsion	Load	Compressive
Number	Mark	Cast	Tested	Days	Pattern	radiess	riass	Density	Length	Width	Load	Strength
C032	7	05-04-2024	03-05-2024	28	A		8229	2438	150.00	150.00	778	34.6
C033	8	05-04-2024	03-05-2024	28	A	l	8261	2448	150.00	150.00	796	35.4
C034	9	05-04-2024	03-05-2024	28	A		8192	2427	150.00	150.00	790	35.1
C035	10	05-04-2024	03-05-2024	28	Α		8240	2441	150.00	150.00	817	36.3
	10.00		2000					Average	150.00	150.00	795 kN	35.0 MPa
							Standard Deviation			0.0	16.1	0.7

Deviation from test method:

Remarks and notes:

CRCP MIX DONE WITHOUT ANY CHEMICALS ADDED FOR STRENGTH COMPARISON

The samples were subjected to analysis according to (COLTO) (TMH1) (BS) (ASTM) (TMH5)

The test results reported relate to the sample tested.

Further use of the above information is not the responsibility or liability of Hitech Construction.

Documents may only be reproduced or published in their full context.

Report compiled by:

Christiaan Jordaan

Christiaan Jordaan Ground / Field Manager

Report program v13.10.1 (01-04-2024)

Hitech Construction

DEEP SEA PORT, SECTION 1

Hitech Construction 1682 Sanusi Fafunwa street VI, Lagos Nigeria

Date reported: 10-05-2024

Request no:

AXION A5

Client:

Axion Africa

Dei-Dei International Building

C35

60 mm

40 mm

Material. Market Abuja.

Opposite Panteka

Project: DANGOTE FERTILIZER TO ELEKO JUNCTION

Attention:

Axion Africa

Compressive Strength of Concrete Cubes [TMH1 - D1, D3, ASTM C293]

Date Received: Date in Water: Cubes Made By:

Cubes Tested By:

Specified Slump:

07-04-2024

Structure / CRCP

Element:

Location:

REFINERY SECTION 1 LABORATORY

Concrete Supplier:

MIXER AT LABORATORY

Delivery Note No:

Truck Reg. Number: Environmental Condition:

SUNNY AND HOT

Curing Tank Temp:

Press Serial No:

Correction Factor

1.000

Engineer's Specification:

Specified Strength (MPa):

Measured Slump: Balance Number:

7 Day Compressive Strength

Lab	Cube	Date	Date	Age	Break	Flotmana	Mana	Apparent	Dime	nsion	Load	Compressive
Number	Mark	Cast	Tested	Days Pattern Platnes	Flatness	Mass	Density	Length	Width	Luad	Strength	
Α	1	06-04-2024	13-04-2024	7	A		8211	2433	150.00	150.00	859	38.2
В	2	06-04-2024	13-04-2024	7	A	1	8175	2422	150.00	150.00	840	37.3
С	3 06-04-2024 13-04-2024 7 A		8130	2409	2409 150.00	150.00	845	37.5				
			1					Average	150.00	150.00	848 kN	38.0 MPa
						Standard Deviation				0.0	10.2	0.5

28 Day Compressive Strength

Lab	Cube	Date	Date	Age	Break	Flatness	Mass	Apparent	Dime	nsion	Load	Compressive
Number	Mark	Cast	Tested	Days	Pattern		Mass	Density	Length	Width	Luad	Strength
D	4	06-04-2024	04-05-2024	28	Α		8194	2428	150.00	150.00	1021	45.4
E	5	06-04-2024	04-05-2024	28	A		8205	2431	150.00	150.00	995	44.2
F	6	06-04-2024	04-05-2024	28	A		8169	2420	150.00	150.00	997	44.3
							L	Average	150.00	150.00	1004 kN	45.0 MPa
							Standard D	eviation	0.0	0.0	14.4	0.6

Deviation from test method:

Remarks and notes:

CRCP MIX DONE WITH AXION AFRICA LIQUID POLYMER ADDED

The samples were subjected to analysis according to (COLTO) (TMH1) (BS) (ASTM) (TMH5)

The test results reported relate to the sample tested.

Further use of the above information is not the responsibility or liability of Hitech Construction.

Documents may only be reproduced or published in their full context.

Report compiled by:

Christiaan Jordaan

Christiaan Jordaan Ground / Field Manager

Report program v13.10.1 (01-04-2024)

Solid Base Stabilizer (SBS) Test Result

NAIRDA

Nac mors	of Stable	2el	Boring I	No.	6	. P. N	_ Sampl	e No.		,		_
est fe armed t	у			Date of		21-	7-8	2 41	2 8	146	.02	er.
				ESTD			54	201	_		_	_
Denaity Det	ermination	M		e Conte		_		_				_
Hold No.	11	Can		e Conte	_	70.1		Pr	octor	Inform	nation	
Wt. of Wet Soil + me	WH (D) 12537	_	of Soil +	Can	_	17	69	Mec			-	-
Vt. of Mould (g)	5686	_	of Dry So		_	5.1	75.4	_	_		-	-
Vs. of wet sample (0 4821		of Water			6-8	8-3	MDI	D		+	-
blume of Mould (c	2302	WŁ	of Can			6.1	36.3	PRI			10.0	200
let Density (g/cm	2.19	WE	of Dry sa	mple		2-8	50.8	-	on Area		19	
loisture Content %	16.3	Moi	sture con	tent	_	-3	16.3	_			111	_
ry Density (gldm 1	1.50				1		-				\vdash	\neg
enetration mr	m.	0.5	1	4.1	_			_				=
o o	Dial Reading		22.4	1.5	2	2.5		4	5	6	7	8
	Force KN		4.97				55.6		76.4	84.6	92.5	11.6
etom	Dial Reading			45.6	75.0	12.5	12.3	22 /				
	Force KN	4 35	9.51	10.1	2.2	69.9	687	77.6	79.9	72.4	99.0	19.0
				2 1	4.1	14.1	19.3	1	17.0	10.3	23	23.3
	HHHH	\mathbf{H}	\blacksquare	ПП	H	П	П	П	Exp	nsion	After S	oak
11111		+		HH	++	+++	+++	Н		Reading		
++++	++++++	+	-	Ш	\Box	Ш	\blacksquare	\Box		Reading		
				HH	$^{++}$	HH	+++	Н		nsion		
++++	HHHH	+	+	HH	Н	Ш	Π	П	_	nsion Af	ter	
			\pm		$^{+}$	+++	H	+	Souk		7877	
+++++	HHHH	\mathbf{H}	-	+	H	П	\mathbf{H}	П	Peri	od of	Soakin	
1111	 	+	++		++	+++	+++	+		00 01 1	JOEK!!!	<u> </u>
$\Pi\Pi\Pi$		Π	\mathbf{H}	Π	П	П	Π	\blacksquare	Res	_		
++++	 	+++	+	+++	H	HH		\Box	life.	t Cone	be-	
		Ш	\blacksquare					1	1			_
 	+++++		4	1	++		+++	+		t. Cont.	after	
		1	4		П	ш	\Box	\Box		Density	e/cm3	
+++++		H	+	+++	H	+++	+++	₩		ansion at		
100	4				\Box	Ш	\Box	\Box		ing %		TOP
A		Ш	\mathbf{H}	$+\Pi$	H	+++	+++	++-	C.B.	R@ 25	mm	83.8
	 	HH	+++	+++	tt	H		\pm	C.B.	R@ 5.0	mm	85.
					П	Ш	Щ	щ	Ave	C.B.R		166.5
	2 3		4	5		6	7		,			

Solid Base Stabilizer (SBS) Test Results by Dantata & Sawoe Construction Company

TYPE OF MARTERIAL	SAMPLED AT	LL	PI	SIEVE 200	Soil Class	CBR UNSOAKED WITHOUT WITH STABILISER STABILISER		% Increased	CBR UNSOAKED
									AFTER 7 DAYS(with Stabiliser)
BASE COURSE	BORROW PIT	28	6.6	18	A-2	88.7	104.5	15.8	
FILL MATERIAL	SITE	30.2	11.7	30.6	A-2	11	42.1	31.1	109.7

- Two types of materials were tested to determine the effect of Base stabiliser in CBR. One is base and the other is fill quality.
- CBR of these materials were determined in Unsoaked condition since the intended usage of the materials are for Base layer.
- As shown in the table above, the CBR value of the base material without Stabiliser already met the required CBR value of base course which is min of 80% whilst the Fill material has 11% only.
- After treating both materials with Base Stabiliser with a dosage of 1 liters Stabiliser to 300 liters of water, CBR value increased by 16% to 31%.
- Manufacturer gave instruction that material treated with stabiliser must be tested for CBR at 28days in unsoaked condition which we
 deemed too long that's why we come up testing it after 7days

Note:

1.) No doubt that there is positive effect in CBR after treating the materials with Base stabiliser, even achieving more than 80% CBR after 7 days in unsoaked condition. However, testing CBR after 7days in unsoaked condition is not part of Nigerian Specification unless it is required by Engrs or recommended by the manufacturer with written approval of Engr representative

Axion Bitumen Booster (ABB) Test Results

Construction * Materials * Technologies Geotechnical, Environmental, & Materials Engineering/Testing/Research

CMT ID: AE 448

Patrick O'keke, Esq.

Axion Global Engineering Ltd/
Federal ministry of works,
Mabuchi, Abuja. Nigeria

Project Info: Rheological property determination of different blends of PG 64-22 with given polymers

Gentlemen,

CMT Engineering Laboratories was requested to perform a binder design utilizing Axion Bitumen Booster (P) and (L). The intent was to design a binder with a top end PG grading on 64 minimum, an elastic recovery of 50% minimum and to pass a Hamburg Rutting test on 10mm maximum. An unmodified binder was selected from a local supplier to begin this process, please reference the test data for the material performance.

Test Required:

- Prepare Polymer Modified Blends of Unmodified PG 64-22 with Axion Bitumen Booster (P) and
 (L) in following proportions;
 - A. PG 64-22 + 3% Axion Eitumen Booster (P)
 - B. PG 64-22 + 3% Axion Bitumen Booster (P) + 0.25% Axion Bitumen Booster (L)
 - C. PG 64-22 + 3% Axion Bitumen Booster (P) + 0.50% Axion Bitumen Booster (L)
- 2. Perform DSR Original (AASHTO T 315) on PG 64-22 and three Polymer modified blends
- 3. Perform Elastic Recovery (AASHTO T301) on RTFO Aged Residues (AASHTO T 240)

TEST	Temp	Method	SPECIFICATION	REPORT	RESULT	
ORIGINAL BINDER						
BASE ASPHALT PG 54-22						
Dynamic Shear, G*/sin δ, 10 rad/sec	64° C	T315	Min. 1.0 kPa	1.25	Pass	
Dynamic Shear, G*/sin δ, 10 rad/sec	70° C	T315	Min. 1.0 kPa	0.592	Fail	
Tc (High) Original = 65.8 °C						
PG 64-22 + 3% AXION BITUMEN BOOSTER (P)						
Dynamic Shear, G*/sin δ, 10 rad/sec	64° C	T315	Min. 1.0 kPa	3.17	Pass	
Dynamic Shear, G*/sin δ, 10 rad/sec	70° C	T315	Min. 1.0 kPa	1.64	Pass	
Dynamic Shear, G*/sin δ, 10 rad/sec	76° C	T315	Min. 1.0 kPa	0.887	Fail	
Tc (High) Original = 74.8 °C						

PG 64-22 + 3% AXION BITUMEN BOOSTER (P) + 0.25% AXION BITUMEN BOOSTER (L)

Dynamic Shear, G*/sin δ, 10 rad/sec	64 ⁰ C	T315	Min. 1.0 kPa	3.89	Pass
Dynamic Shear, G*/sin δ, 10 rad/sec	70° C	T315	Min. 1.0 kPa	2.09	Pass
Dynamic Shear, G*/sin δ, 10 rad/sec	76°C	T315	Min. 1.0 kPa	1.16	Pass
Dynamic Shear, G*/sin 5, 10 rad/sec	82° C	T315	Min. 1.0 kPa	0.676	Fail

PG 64-22 + 3% AXION BITUMEN BOOSTER (P) + 0.5% AXION BITUMEN BOOSTER (L)

Dynamic Shear, G*/sin δ, 10 rad/sec	64° C	T315	Min. 1.0 kPa	4.77	Pass
Dynamic Shear, G*/sin δ , 10 rad/sec	70° C	T315	Min. 1.0 kPa	2.60	Pass
Dynamic Shear, G*/sin δ , 10 rad/sec	76 ⁰ C	T315	Min. 1.0 kPa	1.46	Pass
Dynamic Shear, G*/sin δ, 10 rad/sec	82°C	1315	Min. 1.0 kPa	0.843	Fail

Tc (High) Original = 80.1 °C

Tc (High) Original = 77.7 °C

ROLLING THIN FILM OVEN(T240)

BASE ASPHALT PG 64-22

PG 64-22 + 3% AXION BITUMEN BOOSTER (P)

Elastic Recovery, %	25°C T301	75.0
EIASLIC RECOVERY, 70	25 C 1301	/5.0

PG 64-22 + 3% AXION BITUMEN BOOSTER (P) + 0.25% AXION BITUMEN BOOSTER (L)

Elastic Recovery, % 25°C T301 79.0

PG 64-22 + 3% AXION BITUMEN BOOSTER (P) + 0.5% AXION BITUMEN BOOSTER (L)

Elastic Recovery, %	25°C T301	79.0
---------------------	-----------	------

REPORT AND ANALYSIS:

- 1. Based on Original DSR,
 - a) PG 64-22 is graded at PG 64-XX. The True Grade is 65.8°C
 - b) PG 64-22 + 3% Axion Bitumen Booster (P) is graded at PG 70-XX. The true grade is 74.8°C
 - c) PG 64-22 + 3% Axion Bitumen Booster (P) + 0.25% Axion Bitumen Booster (L) is graded at PG 76-XX. The true grade is 77.7° C
 - d) PG 64-22 + 3% Axion Bitumen Booster (P) + 0.50% Axion Bitumen Booster (L) is grade at PG 76-XX. The true grade is 80.1 $^{\circ}$ C.

The finished blend was delivered to the laboratory to be blended into asphalt for Hamburg testing, the following is an outline of the material properties:

A local aggregate was selected that has failed the Hamburg test in the past, this aggregate was chosen because we wanted to avoid an asphalt mixture which would have passed without any modification.

The following is an outline of the asphalt properties as tested:

Blender Content	=5.3% by wt. of mix			
RAP Content	=None			
Air Void Content	=7.3%	Pass		
Average Rutting Depth	=3.10mm	Pass		

	Gradation
Screen	Percent Passing
³ / ₄ "	100
1/2"	99
3/8"	82
#4	48
#8	34
#16	17
#30	11
#50	9.1
#100	7.7
#200	5.3

If you have any questions, please don't hesitate to contact me.

Douglas Water

Axion Tuffcrete Cube Compression Test Results

LAFARGE READY MIX NIGERIA CUBE COMPRESSION TEST REPORT

(Method:BS EN 12390-2000)

151	LafargeHolcim		(Methodibo)	214 12070 20	,,,,		
Project:	Trail mix						
Client:				Site:			
Contractor:				Location:			
Date of Pour	: 11-	Feb-21					
Mix No.:	Black Axion Pov	vder		Mix Grade:	C30		
Placing Meth	od			Cube curing	g		
	Pur	np		0	Curing a	gent	
	Chu	ıte			Water cu	ıred	
	Buc	ket			Dry cure	ed	
	Oth	ers			Others		
SLUMP (mm):							
7 Days					AREA (m	m ²):22500	
Mark on	Date of Testing	Age	Size of	Weight	Density	Load	Strength
cubes	Date of Testing	(Days)	cube(mm)	(Kg)	(Kg/m^3)	(KN)	(N/mm^2)
1	18-Feb-21	7	150x150x150	8.15	2415	418.5	18.6
2	18-Feb-21	7	150x150x150				
3	18-Feb-21	7	150x150x150				
	Average		150x150x150	8.15	2415	418.5	18.6
28 Days							
Mark on	Date of Testing	Age	Size of	Weight	Density	Load	Strength
cubes	Date of Testing	(Days)	cube(mm)	(Kg)	(Kg/m^3)	(KN)	(N/mm^2)
4	11-Mar-21	28	150x150x150	8.23	2439	738.0	32.8
5	11-Mar-21	28	150x150x150				
6	11-Mar-21	28	150x150x150				
	Average		150x150x150	8.23	2439	738.0	32.8
Cube Cast by Mr Ogunjobi	·:						

Axion Products Approval by Federal Ministry of Works

HISDAY MONDAY OCTOBER 20, 2014

FEDERAL MINISTRY OF WORKS

COMMUNIQUÉ OF THE 21ST NATIONAL COUNCIL ON WORKS HELD AT THE DELTA STATE GOVERNMENT EVENT CENTRE, ASABA, DELTA STATE FROM OCTOBER 12 TO 17, 2014

- (20) Council approved the use of stabilizers and bitumen booster already being implemented by the Federal Ministry of Works as a means of improving the durability of road pavement, as well as reducing cost of road construction in the country.
- (21) Council directed Ministries in charge of roads to collaborate with universities and Research centres towards utilization of research findings as well as to consciously refer to the office of the Surveyor General of the Federation and State Surveyor-General for permanent data. being the repository for such data.

The 21st Meeting of the National Council on Works with the therms "Funding Road Development in Nigeria: A Parisoca for Economic Transformation" was held at the Delta State Government Event Contra, Asaba, Delta State, from Sunday 12th to Friday 17th October, 2014. The meeting was declared open by his Excellency, the Deputy Governor of Delta State, Prof. Amos Uluama (SAN) on behalf of his Excellency, Dr. Emmanuel Ewela Usuaghan CON, Executive Governor of Delta State.

Moeting of the Technical Committees, as well as a meeting of the Permanent Secretaries precided the Council Meeting whitawas presided over by Arc. Mike Oziegbe Onotennemen, CON.

Present at the Council meetings were distinguished membors of the National Assembly led by the Charman. House Committee on Works, Hun. Oguseli Ozornigbochi; the Honourable Minister of Works, Arc. Mike Obegoe Onolememen, CON: Permanent Secretary, Federal Ministry of Works, Dr. A. K. Muhammad, OON; Honourable Commissioners of Works and their Permanent Secretaries from the 36 States of the Federation. Others were the Directors in the Federal Ministry of Works. Directors/Officials of other Federal and State Ministrius, Oepaniments and Agencies (MDAs), as well as Stateholders in the Road Section.

- (17) Council noted that the Contractor-Finance Model of funding road intrastructure rise not been fully developed in the country and urgod the use of this model for road projects and directed for the review of the provisions of the Construction Policy to promote greater participation of indigenous contractors in the road sector in line with the Local Content Policy.
- (18) Council recognised the importance of data to planning for road development, and accustingly adopted the creation of Road Asset Management System (RAMS) as a local for project planning, budgeling and provideration.
- (19) Council recognized tolling of roads and bridges as a vertable source of funding Road Development and noted that the Federal Ministry of Works had already carried out series of sensitization workshops to edical stakeholders buy in.
- (20) Council approved the use of stabilizers and bitumen booster aready being implemented by the Federal Ministry of Works as a means of improving the durability of read pavement, as well as reducing cost of read construction in the country.
- (21) Council directed Ministries in charge of mads to collaborate with Universities and Research Centres lowerds utilization of research findings, as well as to consciously refer to the Office of the Surveyor General of the Federation and State Surveyors-Coneral for pertinent data, being the repository for such data.

In tehanete i

CONTACT INFORMATION

08182995287

ABUJA

Century Mall, Plot 162 Olaipo Diya Street Opposite Green View Garden. Gudu. Abuja. Nigeria.

TEL: 07037162575 | 07069470754 | 09096723586

LAGOS

10A T.F Kuboye Road Oniru Lekki Phase 1 Lagos, Nigeria

TEL: 07030865313

PORT HARCOURT

Km: 1/2 Aba Express Road Port Harcourt Rivers State, Nigeria

TEL: 08182995287

SOME OF OUR CLIENTS

